Vision Screener Update: www.ABCD-Vision.org
Date: April 10,
2020
Summary: Portable
instrument-based technology for early detection of amblyopia and amblyopia risk
factors (ARF)
TABLE:
Now |
Device |
Version |
Price |
Source |
Interpret |
Sens |
Spec |
PPV |
Comments |
|
|
|
|
Nuremburg
Germany |
|
|
|
|
|
|
|
+ |
|
S16 |
|
|
In
(99177) |
|
|
|
|
(+)
infrared multi-axial, precise,
sturdy handle, Excellent
referral criteria selection (-) slower on high errors |
+ |
|
S12,
A12 |
|
|
In
(99177) |
1-6 |
|
|
|
(+)infrared multi-axial, precise, AA batteries, sturdy handles, Excellent
referral criteria selection (-) slower on high errors |
- |
|
S09,
A09 |
|
|
|
4,7-12 |
74-98 |
41-96 |
|
|
- |
|
S08
desk |
|
|
|
12-14 |
|
|
|
|
- |
|
S04
desk |
|
|
|
15,16 |
|
|
|
(+)
fast and child-friendly, rapid, convenient user output, Christian Schmidt (-)
requires windows computer and firewire cables |
|
|
|
iScreen, Memphis, TN |
Cent
(99174) |
AAPOS4,17,18 |
|
|
|
|
|
- |
|
Table-top |
|
|
|
19, AAPOS20 |
|
|
|
(+)excellent centered red reflex and reading center, Jack
Bellows (-) single image- current
model too large |
+ |
|
Hand-held |
|
|
|
4,12,18 |
|
|
|
(+)
fastest and best for delayed
kids (-_ single axis |
|
|
|
Adaptica
(Padova, Italy) |
In
(99177) |
21,22 |
|
|
|
(+)
infrared multiaxial, accurate
refraction, Mario Angi (-) old touch buttons
and small screen |
|
+ |
|
Hand-held |
|
|
|
1,2 |
|
|
|
|
+ |
|
CR
function |
|
|
|
AAPOS23,24 |
|
|
|
(+)
infrared occluder for strabismus |
+ |
|
Kaleidos
case |
|
|
|
25 |
|
|
|
(+)
luminance and distraction control, extra battery, tablet control WiFi or Bluetooth (-) too close for infants, big |
|
|
|
Gobiquity, |
In
(99177) or cent (99174) |
|
|
|
|
(+)
convenient familiar platform,
portable, affordable per use pricing, central data control (-)
wide-angle LED flash |
|
- |
|
Nokia
1020 |
|
|
|
26,27 |
|
|
50-78 |
(+)
true flash (-) tape over flash |
+ |
|
iPhone
7+ |
|
|
|
28 |
|
|
|
(+)
familiar screen app (-) slow LED flash |
+ |
|
Flash
concentrate |
|
|
|
25 |
|
|
|
(+)
faster LED, two axis, fix on yellow square (-) |
? |
|
Glow
fix |
|
|
|
|
|
|
|
(+)
relax accommodation (-) too interesting stays on |
? |
|
iPhone(s) |
|
|
|
29 |
|
|
|
(+)
could be public, (-) loss of doc control, less flash control |
+ |
|
|
Welch
Allyn |
In
(99177) |
2,4,6,30-33 |
|
|
|
(+)
infrared multiaxial, fast, big vendor (-) less precise axis, minimal upgrades |
|
? |
|
|
MediWorks Shanghai, China |
|
|
|
|
|
(+)
infrared photorefractor |
|
? |
|
|
Digital Eye Center, China |
|
AAPOS34 |
|
|
|
(+)
infrarred, like SPOT
|
|
HVS002 | Hans Heiss, MercoFrames | |||||||||
+ |
|
$9K |
Rebion (prior PVS, Rebiscan) |
In
(CPT), EMR |
Ambly-Stab35-38, AAPOS24,39 |
|
|
|
(+)
birefringent binocular foveation, Hunter and Guyton, fixation instability (? Strabismic amblyopia),
(-) heavy, hard to hold, frequent inconsistent interpretation |
|
+ |
K+
III |
$14K |
Righton |
Only
Rx, 92015 |
1,8,40-43 VIPS44, AAPOS1,23,45 |
|
|
|
(+)
Hartman-Shack autorefractor, excellent refract ± cycloplegia, keratometry, printer (-) monocular,
too close for infants, cost |
|
- |
|
|
Welch
Allyn |
|
VIPS44,46, AAPOS47 |
|
|
|
(+)
monocular remote 30cm autorefract, kid adds +2,
VIPS calibrated (-) low PPV |
|
- |
|
|
|
Required
reader |
16,20,48-66 VIPS44,46 |
|
|
|
(+)
Simple, sturdy, focus-in-dark, high predictive value possible, Howard
Freedman (-) Polaroid film, needs interpret |
|
- |
|
|
|
Paired
computer |
Iowa67 AAPOS20,68 |
|
|
|
(+)
original, Kodak digital camera with extra flash, David Granet
(-) slow serial cables, too sensitive |
|
- |
Vision
Research |
|
|
|
reader |
69 |
|
|
|
(+) extensive Kindergarten experience,
Keith Morgan (-) 35 mm film camera in frame |
- |
|
|
|
|
66ALSPAC VIPS44,70 |
|
|
|
(+) precursor to PlusoptiX |
|
- |
|
|
ABCD |
|
AAPOS71,72 |
|
|
|
|
|
- |
|
Gateway
DV-S20 |
|
|
DCC |
AAPOS17 |
|
|
|
(+) consumer $99 2megapixel non-zoom camera (-) low resolution |
- |
|
Canon
TX1 |
|
ABCD |
DCC |
AAPOS17 |
|
|
|
(+)
10x zoom 7 megapixel camera, close flash-lens |
- |
|
|
ABCD |
DCC |
AAPOS17 |
|
|
|
(+)
precursor to iCheck Kids GCK (-) not override
pre-flash |
|
+ |
CRADLE |
iPhone
7 |
|
IOS |
|
73-75 |
|
|
|
(+)
Screens facial photographs for leukocoria |
|
MDEyeCare |
iPhone
7 |
|
IOS |
|
73 |
|
|
|
(+)
more sensitive in real cases than CRADLE |
Legend: “Now” indicates currently available or
not, Devices have sometimes been produced with different versions. Internal software interpretation versions
also differ and are not all included here.
Interpretation by instrument referral guidelines either internal
computer in screener on site (In) or sent to central expert reader for manual
interpretation. Comments include
advantages (+) and disadvantages (-).
Video Examples
Community
Impact of Photoscreening Programs48,56,61,76-80
General topics
and reviews of photoscreening81-89
Uniform Validation Guidelines90,91
History and
Development of Objective Vision Screening92-97
References:
1. Racano
E, Alessi S, Pertile R. Comparison of 2Win and plusoptiX A12R refractometers
with Retinomax handheld autorefractor keratometer. J AAPOS. 2019;23(5):276 e271-276 e275.
2. Kirk
S, Armitage MD, Dunn S, Arnold RW. Calibration and Validation of the 2WIN Photoscreener
Compared to the PlusoptiX S12 and the SPOT. J
Pediatr Ophthalmol Strabismus. 2014;51(5):1-4.
3. Chang
DA, Ede RC, Chow DC, et al. Early Childhood Vision Screening in Hawai'i
Utilizing a Hand-Held Screener. Hawaii J
Med Public Health. 2015;74(9):292-296.
4. Arnold
RW, Arnold AW, Armitage MD, Shen JM, Hepler TE, Woodard TL. Pediatric
photoscreeners in high risk patients 2012: A comparison study of Plusoptix,
iScreen and SPOT. Binoc Vis and
Strabismus Quart. 2013;28(1):20-28.
5. Li R,
Huang D, Zhu H, et al. [The performance of visual photoscreening for Chinese
preschool children aged 4 to 5 years]. Zhonghua
Yan Ke Za Zhi. 2020;56(3):189-196.
6. Zhang
X, Wang J, Li Y, Jiang B. Diagnostic test accuracy of Spot and Plusoptix
photoscreeners in detecting amblyogenic risk factors in children: a systemic
review and meta-analysis. Ophthalmic
Physiol Opt. 2019;39(4):260-271.
7. Arnold
RW, Tulip D, McArthur E, et al. Predictive value from pediatrician Plusoptix
screening: Impact of refraction and binocular alignment. Binoc Vis and Strabismus Quart. 2012;27(4):227-232.
8. Payerols
A, Eliaou C, Trezeguet V, Villain M, Daien V. Accuracy of PlusOptix A09 distance
refraction in pediatric myopia and hyperopia. BMC Ophthalmol. 2016;16:72.
9. Singman
E, Matta N, Tian J, Silbert D. A comparison of referral criteria used by the
plusoptiX photoscreener. Strabismus. 2013;21(3):190-194.
10. Singman
E, Matta N, Fairward A, Silbert D. Evaluation of plusoptiX photoscreening
during examinations of children with autism. Strabismus. 2013;21(2):103-105.
11. Silbert
DI, Matta NS, Andersen K. Plusoptix photoscreening may replace cycloplegic
examination in select pediatric ophthalmology patients. J AAPOS. 2013;17(2):163-165.
12. Wang J,
Suh D. Comparison between the plusoptix and iScreen photoscreeners in detecting
amblyopic risk factors in children (meeting abstract). J AAPOS. 2012;16(1):105.
13. Saber
Moghadam A, Alizadeh R, Zarei-Ghanavati M. Plusoptix S08 sensitivity in
detecting strabismus as amblyogenic risk factor. Strabismus. 2013;21(4):230-234.
14. Bloomberg
J, Suh D. Performance of the plusoptix A08 photoscreener for the detection of
amblyopia risk factors in children 0-5 in central Iowa (Meeting abstract). J AAPOS. 2012;16(1):105.
15. Matta
NS, Arnold RW, Singman EL, Silbert DI. Can a photoscreener help us remotely
evaluate and manage amblyopia? Am Orthopt
J. 2011;61:124-127.
16. Matta
NS, Arnold RW, Singman EL, Silbert DI. Comparison between the plusoptiX and MTI
Photoscreeners. Arch Ophthalmol. 2009;127(12):1591-1595.
17. Arnold
RW, Davis B, Arnold LE, Rowe KS, Davis JM. Calibration and validation of nine
objective vision screeners with contact lens-induced anisometropia. J Pediatr Ophthalmol Strabismus. 2013;50(3):184-190.
18. Silbert
DI, Matta NS, Arnold RW. Comparing The Iscreen To The Mti Photoscreener In
Pediatric Vision Screening. IOVS. 2012.
19. Kennedy
R, Thomas D. Evaluation of the iScreen digital screening system for amblyogenic
factors. Can J Ophthalmol. 2000;35(5):258-262.
20. Kovtoun
TA, Arnold RW. Calibration of photoscreeners for threshold contact- induced
hyperopic anisometropia: Introduction of the JVC photoscreeners. JPOS. 2004;41(3):150-158.
21. Angi MR,
Bergamo L, Bisantis C. The binocular videorefractoscope for visual screening in
infancy. Ger J Ophthalmol. 1993;2(3):182-188.
22. Angi
MR, Pucci V, Forattini F, Formentin PA. Results of photorefractometric
screening for amblyogenic defects in children aged 20 months. Behav Brain Res. 1992;49(1):91-97.
23. Arnold
SL, Arnold AW, Sprano JH, Arnold RW. Performance of the 2WIN photoscreener with
“CR” strabismus estimation in high risk patients. Am J Ophthalmol. 2019;207:195-203.
24. Arnold
RW. Comparative AAPOS validation of the blinq birefringent amblyopia screener
with isolated small-angle strabismus. Clin
Ophthalmol. 2020;14:325-329.
25. Martin
SJ, Htoo HE, Hser N, Arnold RW. Performance of two photoscreeners enhanced by
protective containers. Clin Ophthalmol. 2020;14:Pending.
26. Arnold
RW, Arnold AW, Hunt-Smith TT, Grendahl RL, Winkle RK. The Positive Predictive
Value of Smartphone Photoscreening in Pediatric Practices. J Pediatr Ophthalmol Strabismus. 2018;55(6):393-396.
27. Law MX,
Pimentel MF, Oldenburg CE, de Alba Campomanes AG. Positive predictive value and
screening performance of GoCheck Kids in a primary care university clinic. J AAPOS. 2020.
28. Arnold
RW, O'Neil JW, Cooper KL, Silbert DI, Donahue SP. Evaluation of a smartphone
photoscreener app to detect refractive amblyopia risk factors in children 1-6
years. Clin Ophthalmol. 2018;12:1533-1537.
29. Silbert
DI, Arnold RW. Do we need to directly detect astigmatism when photoscreening
for amblyopia risk factors (ARFs)? 244. 2015;19(4):e61.
30. Forcina
BD, Peterseim MM, Wilson ME, et al. Performance of the Spot Vision Screener in
Children Younger Than 3 Years of Age. Am
J Ophthalmol. 2017;178:79-83.
31. Feldman
S, Peterseim MMW, Trivedi RH, Edward Wilson M, Cheeseman EW, Papa CE. Detecting
High Hyperopia: The Plus Lens Test and the Spot Vision Screener. J Pediatr Ophthalmol Strabismus. 2017;54(3):163-167.
32. de
Jesus DL, Villela FF, Orlandin LF, Eiji FN, Dantas DO, Alves MR. Comparison
between refraction measured by Spot Vision Screening and subjective clinical
refractometry. Clinics (Sao Paulo). 2016;71(2):69-72.
33. Ransbarger
KM, Dunbar JA, Choi SE, Khazaeni LM. Results of a community vision-screening
program using the Spot photoscreener. J
AAPOS. 2013;17(5):516-520.
34. Qian X,
Li Y, Ding G, et al. Compared performance of Spot and SW800 photoscreeners on
Chinese children. Br J Ophthalmol. 2019;103(4):517-522.
35. Gramatikov
BI. Detecting central fixation by means of artificial neural networks in a
pediatric vision screener using retinal birefringence scanning. Biomed Eng Online. 2017;16(1):52.
36. Jost
RM, Yanni SE, Beauchamp CL, et al. Beyond Screening for Risk Factors: Objective
Detection of Strabismus and Amblyopia. JAMA
ophthalmology. 2014;132(7):814-820.
37. Hunter
DG, Piskun NV, Guyton DL, Gramatikov BI, Nassif DS. Clinical performance of the
Pediatric Vision Screener. J AAPOS. 2004;8(1):107
(abstract).
38. Hunter
DG, Shah AS, Sau S, Nassif D, Guyton DL. Automated detection of ocular
alignment with binocular retinal birefringence scanning. Appl Opt. 2003;42(16):3047-3053.
39. Shah S,
S., Jimenez JJ, Rozema E, Nguyen MK, Fong DS, Mehta AM. Validation of the Pediatric
Vision Scanner in a Normal Preschool Population. Poster presented at American
Academy of Ophthalmology; October 12, 2019, 2019; San Francisco, CA.
40. Kinori
M, Molina I, Hernandez EO, et al. The PlusoptiX Photoscreener and the Retinomax
Autorefractor as Community-based Screening Devices for Preschool Children. Curr Eye Res. 2018:1-5.
41. Fledelius
HC, Bangsgaard R, Slidsborg C, laCour M. The usefulness of the Retinomax
autorefractor for childhood screening validated against a Danish preterm cohort
examined at the age of 4 years. Eye
(Lond). 2015.
42. Cordonnier
M, Kallay O. Non-cycloplegic screening for refractive errors in children with
the hand-held autorefractor Retinomax: final results and comparison with
non-cycloplegic photoscreening. Strabismus.
2001;9(2):59-70.
43. Margines
JB, Huang C, Young A, et al. Refractive Errors and Amblyopia Among Children
Screened by the UCLA Preschool Vision Program in Los Angeles County. Am J Ophthalmol. 2020;210:78-85.
44. VIPS.
Comparison of preschool vision screening tests as administered by licensed eye
care professionals in the vision in preschoolers study. Ophthalmology. 2004;111(4):637-650.
45. Arnold
RW, Davis B, Arnold LE, Rowe KS, Davis JM. Calibration and validation of 9
objective vision screeners with contact-lens induced anisometropia. ABCD. http://www.abcd-vision.org/references/Calibrate-9/Calbrate-9.htm.
Published 2012. Accessed 9/5/2012, 2012.
46. VIPS,
Dobson V, Quinn G, et al. Preschool vision screening tests administered by
nurse screeners compared with lay screeners in the Vision in Preschoolers
Study. IOVS. 2005;46:2639-2648.
47. Lang D,
Leman R, Arnold AW, Arnold RW. Validated portable pediatric vision screening in
the Alaska Bush. A VIPS-like study in the Koyukon. Alaska Med. 2007;49(1):2-15.
48. Longmuir
SQ, Boese EA, Pfeifer W, Zimmerman B, Short L, Scott WE. Practical community
photoscreening in very young children. Pediatrics.
2013;131(3):e764-769.
49. Leman
RE, Clausen MM, Bates J, Stark L, Arnold KK, Arnold RW. A comparison of patched
HOTV visual acuity and photoscreening. J
Sch Nurs. 2006;22(4):237-243.
50. Arnold
RW, Donahue SP. The yield and challenges of charitable state-wide
photoscreening. Binocul Vis Strabismus Q.
2006;21(2):93-100.
51. Salcido
AA, Bradley J, Donahue SP. Predictive value of photoscreening and traditional
screening of preschool children. J Aapos.
2005;9(2):114-120.
52. Arnold
RW, Armitage MD, Gionet EG, et al. The cost and yield of photoscreening: impact
of photoscreening on overall pediatric ophthalmic costs. J Pediatr Ophthalmol Strabismus. 2005;42(2):103-111.
53. Arnold
RW. Pseudo-false positive eye/vision photoscreening due to accommodative
insufficiency. A serendipitous benefit for poor readers? Binocul Vis Strabismus Q. 2004;19(2):75-80.
54. Salcido
AA, Johnson T, Bradley J, Donahue SP. Predictive value of photoscreening and
traditional screening of preschool children. Paper presented at: AAPOS Annual
Meeting; 3/24/2003, 2003; Waikoloa, Hawaii.
55. Enzenauer
RW. The efficacy of photoscreening for amblyopiagenic factors in a high risk
population. Binocul Vis Strabismus Q. 2003;18(4):233-240.
56. Arnold
RW. Highly specific photoscreening at the Alaska State Fair: Valid Alaska Blind
Child Discovery photoscreening and interpretation. Alaska Med. 2003;45(2):34-40.
57. Donahue
SP, Johnson TM, Ottar W, Scott WE. Sensitivity of photoscreening to detect
high-magnitude amblyogenic factors. J
AAPOS. 2002;6(2):86-91.
58. Miller
JM, Schwiegerling J, Leising-Hall H, Surachatkumtonekul T. Detection of
improper fixation in MTI photoscreening images. J AAPOS. 2001;5(1):35-43.
59. Tong
PY, Macke JP, Bassin RE, et al. Screening for amblyopia in preverbal children
with photoscreening photographs. III. improved grading criteria for hyperopia. Ophthalmology. 2000;107(9):1630-1636.
60. Donahue
SP, Johnson TM, Leonard-Martin TC. Screening for amblyogenic factors using a
volunteer lay network and the MTI photoscreener. Initial results from 15,000
preschool children in a statewide effort. Ophthalmology.
2000;107(9):1637-1644; discussion 1645-1636.
61. Arnold
RW, Gionet E, Jastrzebski A, Kovtoun T, Armitage M, Coon L. The Alaska Blind
Child Discovery project: Rationale, Methods and Results of 4000 screenings. Alaska Med. 2000;42:58-72.
62. Weinand
F, Graf M, Demming K. Sensitivity of the MTI photoscreener for amblyogenic
factors in infancy and early childhood. Graefes
Arch Clin Exp Ophthalmol. 1998;236(11):801-805.
63. Tong P,
Enke-Miyazaki E, Bassin R, et al. Screening for amblyopia in preverbal children
with photoscreening photographs. Ophthalmol.
1998;105(5):856-863.
64. Lewis
R, Marsh-Tootle W. *The reliability of interpretation of photoscreening results
with the MTI PS-100 in Headstart preschool children. J Am Optom Assoc. 1995;66(7):429-434.
65. Freedman
H, Preston K. Polaroid photoscreening for amblyogenic factors. An improved technology. Ophthalmol. 1992;99:1785-1795.
66. Yanovitch
T, Wallace DK, Freedman SF, et al. The accuracy of photoscreening at detecting
treatable ocular conditions in children with Down syndrome. J AAPOS. 2010;14(6):472-477.
67. Ottar
WL, Scott WE, Holgado SI. Photoscreening for amblyogenic factors. J Pediatr Ophthalmol Strabismus. 1995;32:289-295.
68. Granet
D, Hoover A, Smith A, Brown S, Bartsch D-U, Brody B. A new objective digital
computerized vision screening system. JPOS.
1999;36(5):251-256.
69. Morgan
KS, Kennemer JC. Off-axis photorefractive eye screening in children. J Cataract Refract Surg. 1997;23(3):423-428.
70. Williams
C, Harrad RA, Harvey I, Sparrow JM. Screening for amblyopia in preschool
children: results of a population- based, randomised controlled trial. ALSPAC
Study Team. Avon Longitudinal Study of Pregnancy and Childhood. Ophthalmic Epidemiol. 2001;8(5):279-295.
71. Arnold
RW, Clausen M, Ryan H, Leman RE, Armitage D. Predictive value of inexpensive
digital eye and vision photoscreening: "PPV of ABCD". Binocul Vis Strabismus Q. 2007;22(3):148-152.
72. Arnold
RW, Arnold AW, Stark L, Arnold KK, Leman RE, Armitage MD. Amblyopia detection
by camera (ADBC): Gateway to portable, inexpensive, vision screening. Alaska Med. 2004;46(3):63-72.
73. Khedekar
A, Devarajan B, Ramasamy K, Muthukkaruppan V, Kim U. Smartphone-based
application improves the detection of retinoblastoma. Eye (Lond). 2019;33(6):896-901.
74. Munson
MC, Plewman DL, Baumer KM, et al. Autonomous early detection of eye disease in
childhood photographs. Sci Adv. 2019;5(10):eaax6363.
75. Vagge
A, Wangtiraumnuay N, Pellegrini M, Scotto R, Iester M, Traverso CE. Evaluation
of a Free Public Smartphone Application to Detect Leukocoria in High-Risk
Children Aged 1 to 6 Years. J Pediatr
Ophthalmol Strabismus. 2019;56(4):229-232.
76. Teed
RG, Bui CM, Morrison DG, Estes RL, Donahue SP. Amblyopia therapy in children
identified by photoscreening. Ophthalmology.
2010;117(1):159-162.
77. Longmuir
SQ, Pfeifer W, Leon A, Olson RJ, Short L, Scott WE. Nine-year results of a
volunteer lay network photoscreening program of 147 809 children using a
photoscreener in Iowa. Ophthalmology. 2010;117(10):1869-1875.
78. Kirk
VG, Clausen MM, Armitage MD, Arnold RW. Preverbal photoscreening for amblyogenic
factors and outcomes in amblyopia treatment: early objective screening and
visual acuities. Arch Ophthalmol. 2008;126(4):489-492.
79. Donahue
SP, Lorenz S, Johnson T. Photo screening around the world: Lions Club
International Foundation experience. Semin
Ophthalmol. 2008;23(5):294-297.
80. Vernacchio
L, Trudell EK, McLaughlin SR, Bhambhani V. Effect of Instrument-Based Vision
Screening for 3- to 5-Year-Old Children on Referrals to Eye Care Specialists. Clin Pediatr (Phila). 2019:9922819832020.
81. O’hara
MA. Instrument-based pediatric vision screening. Current Opinion Ophthalmology. 2016;27(0):1-4.
82. Kerr N,
Arnold R. Vision screening for children: current trends, technology and
legislative issues. Curr Opin Ophthalmol.
2004;15:454-459.
83. Silverstein
E, Donahue SP. Preschool Vision Screening: Where We Have Been and Where We Are
Going. Am J Ophthalmol. 2018;194:xviii-xxiii.
84. Instrument-Based
Vision Screening in Children. Pediatrics.
2017;139(1).
85. Sanchez
I, Ortiz-Toquero S, Martin R, de Juan V. Advantages, limitations, and
diagnostic accuracy of photoscreeners in early detection of amblyopia: a
review. Clin Ophthalmol. 2016;10:1365-1373.
86. Simons
K. Photoscreening [editorial]. Ophthalmology.
2000;107(9):1619-1620.
87. Hartmann
EE, Dobson V, Hainline L, Marsh-Tootle W, Quinn GE, Ruttum MS. Summary
Statement. In: Hartmann EE, ed. Vision
Screening in the Preschool Child. Vol 1. McLean, Virginia: National
Maternal and Child Health Clearinghouse; 1998:3-15.
88. Hamer
R, Norcia A, Day S. Comparison of on- and off-axis photorefraction with
cycloplegic retinoscopy in infants. J
Pediatr Ophthalmol Strabismus. 1992;29:232-239.
89. Force
USPST, Grossman DC, Curry SJ, et al. Vision Screening in Children Aged 6 Months
to 5 Years: US Preventive Services Task Force Recommendation Statement. JAMA. 2017;318(9):836-844.
90. Donahue
SP, Arthur B, Neely DE, Arnold RW, Silbert D, Ruben JB. Guidelines for
automated preschool vision screening: A 10-year, evidence-based update. J AAPOS. 2013;17(1):4-8.
91. Donahue
S, Arnold R, Ruben JB. Preschool vision screening: What should we be detecting
and how should we report it? Uniform
guidelines for reporting results from studies of preschool vision screening. J AAPOS. 2003;7(5):314-316.
92. Roorda
A, Bobier WR, Campbell MC. An infrared eccentric photo-optometer. Vision Res. 1998;38(13):1913-1924.
93. Roorda
A, Campbell MC, Bobier WR. Slope-based eccentric photorefraction: theoretical
analysis of different light source configurations and effects of ocular
aberrations. J Opt Soc Am A. 1997;14(10):2547-2556.
94. Roorda
A, Campbell MC, Bobier WR. Geometrical theory to predict eccentric
photorefraction intensity profiles in the human eye. J Opt Soc Am A. 1995;12(8):1647-1656.
95. Campbell
MC, Bobier WR, Roorda A. Effect of monochromatic aberrations on photorefractive
patterns. J Opt Soc Am A. 1995;12(8):1637-1646.
96. Bobier
W. *Quantitative photorefraction using an off-center flash source. Am J Optom Physiol Opt. 1988;65:962-971.
97. Bobier
WR, Braddick OJ. Eccentric photorefraction: optical analysis and empirical
measures. Am J Optom Physiol Opt. 1985;62(9):614-620.